A Symmetrized Milstein scheme with strong rate of convergence for some CEV-like SDEs

نویسنده

  • Mireille Bossy
چکیده

We consider the approximation problem of SDE with non-Lipschitz diffusion coefficients. More specifically, we consider diffusion coefficients of the typical form —x—ˆa, used in popular volatility models in finance such as CEV models. In the context of a one dimensional SDE, we present a modified explicit Milstein scheme that allows us to prove strong convergence at rate one under some theoretical restrictions on the drift and diffusion parameters. The proof lies on classical arguments, except for the treatment of the local error that relies on a priori analysis of a weighted local error. If the theoretical rate one is optimal, as for others approximation strategies the theoretical restrictions imposed in the proof are often pessimistic as shown by some comparative numerical experiments. This is a joint work with Hector Olivero (Universitad de Chile) ∗Speaker sciencesconf.org:montecarlo16:111031

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Better Numerical Approximation for Multi-dimensional SDEs

Today, better numerical approximations are required for multidimensional SDEs to improve on the poor performance of the standard Monte Carlo integration. Usually in finance, it is the weak convergence property of numerical discretizations, which is most important, because with financial applications, one is mostly concerned with the accurate estimation of expected payoffs. However, recent studi...

متن کامل

ASYMPTOTIC ERROR FOR THE MILSTEIN SCHEME FOR SDEs DRIVEN BY CONTINUOUS SEMIMARTINGALES

A Milstein-type scheme was proposed to improve the rate of convergence of its approximation of the solution to a stochastic differential equation driven by a vector of continuous semimartingales. A necessary and sufficient condition was provided for this rate to be 1/n when the SDE is driven by a vector of continuous local martingales, or continuous semimartingales under an additional assumptio...

متن کامل

Balanced Milstein Methods for Ordinary SDEs

Convergence, consistency, stability and pathwise positivity of balanced Milstein methods for numerical integration of ordinary stochastic differential equations (SDEs) are discussed. This family of numerical methods represents a class of highly efficient linear-implicit schemes which generate mean square converging numerical approximations with qualitative improvements and global rate 1.0 of me...

متن کامل

Pricing exotic options using improved strong convergence

Today, better numerical approximations are required for multi-dimensional SDEs to improve on the poor performance of the standard Monte Carlo integration. With this aim in mind, the material in the thesis is divided into two main categories, stochastic calculus and mathematical finance. In the former, we introduce a new scheme or discrete time approximation based on an idea of Paul Malliavin wh...

متن کامل

An explicit Euler scheme with strong rate of convergence for non-Lipschitz SDEs

We consider the approximation of stochastic differential equations (SDEs) with non-Lipschitz drift or diffusion coefficients. We present a modified explicit EulerMaruyama discretisation scheme that allows us to prove strong convergence, with a rate. Under some regularity conditions, we obtain the optimal strong error rate. We consider SDEs popular in the mathematical finance literature, includi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016